
diminution of the amount of triple molecules which give rise to the band here. 
The increase on the short wave-length side is explained as due to increase 
in single water molecules. Comparison of the work in the infra-red by others 
has confirmed these observations.

6. The changes in the intensity distribution of the band with addition of 
electrolytes is also explained by changes in the proportions of triple and single 
molecules. The development of the second maximum with concentrations 
higher than 76 per cent, of nitric acid is attributed to formation of hydrates.

The work was partly done in King’s College, London, and partly at Physisch 
Laboratorium, Utrecht. The author is extremely grateful to Prof. 0. W. 
Richardson and to Prof. L. S. Ornstein for the help and encouragement they 
gave during the course of this work.

Quantum Mechanics of Electrons in Crystal Lattices. 499

Quantum Mechanics of Electrons in Crystal Lattices.

By R. de L. K bonig  and W. G. P e n n e y , University of Groningen.

(Communicated by R. H. Fowler, F.R.S.—Received November 13, 1930.)

Introduction.—Through the work of Bloch our understanding of the behaviour 
of electrons in crystal lattices has been much advanced. The principal idea of 
Bloch’s theory is the assumption that the interaction of a given electron with 
the other particles of the lattice may be replaced in first approximation by a 
periodic field of potential. With this model an interpretation of the specific 
heat,* the electrical and thermal conductivity,f the magnetic susceptibility, J 
the Hall effect,§ and the optical properties! | of metals could be obtained. The 
advantages and limitations inherent in the assumption of Bloch will be much 
the same as those encountered when replacing the interaction of the electrons 
in an atom by a suitable central shielding of the nuclear field, as in the work of 
Thomas and Hartree. * * * §

* Bloch, 1 Z. Physik,’ vol. 52, p. 555 (1928).
t  Bloch, ‘ Z. Physik,’ vol. 52, p. 555 (1928), vol. 53, p. 216 (1929), and vol. 59, p. 208 

(1930); Peierls, 4 Ann. Physik,’ vol. 4, p. 121 (1930), and vol. 5, p. 244 (1930).
t Bloch, ‘ Z. Physik,’ vol. 53, p. 216 (1929).
§ Peierls, 4 Z. Physik,’ vol. 53, p. 255 (1929).
|| Kronig, 4 Proc. Roy. Soc.,’ A, vol. 124, p. 409 (1929).
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In the papers quoted a number of general results were given regarding the 
behaviour of electrons in any periodic field of potential. To obtain a clearer 
idea of the details of this behaviour with a view to the application in special 
problems, however, it appeared worth while to investigate the mechanics of 
electrons in periodic fields of potential somewhat similar to those met with in 
practice and of such nature that the energy values W and eigenfunctions <|* 
of the wave-equation can actually be computed. I t  is the purpose of this 
article to discuss a case where the integration is possible. In Section 1 the 
energy values and in Section 2 the wave-functions in their dependence on the 
binding introduced by the potential field are discussed for the one dimensional 
problem. In Section 3 the matrix elements of the linear momentum, which 
furnish the electric current associated with the various stationary states as 
well as the probability of radiative transitions between these states, are 
evaluated. In Section 4 the results are extended to the three dimensional 
case and those features considered which one may expect to find in the case 
of more general periodic fields of potential. Section 5 deals with some applica­
tions to physical problems.

1. The Energy Values.—The potential field which we shall consider is 
essentially that shown in fig. 1. Later on we shall pass to the limit 6 — 0

{l V (x )

V.*0

“b o a
F ig. I.

and Y0 =  oc as this makes the results mathematically simpler without 
essentially altering their character, but to begin with we leave both 6 and V0 
finite. The wave-equation of the problem is given by

g  +  *2[W _ v ( a;) ] * =*o, =  (D

and following Bloch* we enquire after the solutions which are periodic over
a distance L =  G (a +  6), where G is a large integer. As he has shown, these 
solutions must be of the form

(%) =  u (x) elaX, a =  27U&/L,

where k is any integer and u (&) a function periodic in x with.the period (a +
To find u (x) we can hence confine ourselves to one period of the lattice, say 

* Bloch, * 7. Physik,’ vol. 52, p. 555 (1928).
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from x — — b to x =  a, and moreover, since we later shall make V0 — x  , 
we may assume 0 <  W <  V0. Substituting the expression (2) in equation (1) 
imposes on u in the range — b  ̂ x5* 0 the condition

_|_ 2ix ^  -  (a2 +  y2) =  0
dx/1 ax

with the solution
u =  A e ^ u+y)x +  Be{~ia~v)x, (3)

while in the region 0 ^  x ^  a we have

with the solution

+  2iu ^  -  (a2 -  (32) u =  0 
dx* dx

U =  Q g iC - a + f t *  _j_ D e * < - a“ s ) *. (4)

Here (3 and y are given by
• ________

(3 — k  VW, y =  k VV0 — W. (5)

In particular (3 and y are real quantities and may be assumed positive without 
loss of generality.

The constants A, B, C, D are to be so chosen that the solutions in the two 
regions have the same value and the same first derivative for x =  0, while 
from the periodic nature of u it follows that the solution (3) and its first derivative 
for x — — 6 shall be equal respectively to the solution (4) and its first derivative 
for x — a. The four linear homogeneous equations resulting for the constants 
from these requirements are

A +B =  C+D,
(—ia+y) A + (—ion—y)B — i ( —a+(3)C +i(—- a —-(3)D, 

Ae(la~7)&+B6’(ia+v)6 —
(~ ia+ y)A e(ia-^)6+  (—ia—y) Be(*a+?>6 =  i( -a + (3 )  C e^ ~ a + ^ a

+ i ( — a — (3) D e ^ a- ^

and can be satisfied only if the quantities (3 and y, which according to equation 
(5) are directly related to the energy value W, satisfy the relation

(32
2(3y sinh y6 sin (3a +  cosh y6 cos [3a =  cos a (a +  6).

Passing now to the limit where 6 =  0 and V0 =  oo in such a way that y26 
stays finite and calling

y2a6lim
b 0 2 p,
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this relation becomes
P sin [3a/[3a +  cos [3a =  cos a a, ^

a transcendental equation for [3a.
To discuss the roots of this equation we have plotted its left-hand side as a 

function of [3a in fig. % assuming for P the value 3ru/2. The values of pa

H. de L. Kronig and W. G. Penney.

F ig. 2.

satisfying equation (6) are obtained as the projections on the [3a-axis of the 
intersections of the curve with a straight line drawn at the distance cos oca 
parallel to this axis. Since cos oca lies between —1 and +1, and since the 
ordinates pf the maxima of the curve have an absolute magnitude greater 
than 1, then, upon varying a by giving k different values, the curve is found 
to consist of the portions between the parallels ^ 1  on which there lie inter­
sections and the remaining portions outside these parallels on which there lie 
no intersections. By projection the [3a-axis too is divided into portions 
containing permissible values of [3a (drawn heavily in fig. 2) and portions not 
containing such values. Letting L approach infinity allows us according to 
equation (2) to vary a continuously, and the permissible values of [3a will 
then fill the heavily drawn portions of the [3a-axis continuously. The energy 
values which an electron moving through the lattice may have, hence form a spectrum 
consisting of continuous pieces separated by finite intervals.

I t is of interest to study the influence of P  upon this spectrum. If P van­
ishes, the curve of fig. 2 goes over into cos [3a, the forbidden intervals of the 
[3a-axis disappear, and we have one continuous spectrum of all energy values 
from 0 to oo. This is the limiting case of free electrons. Increasing P we 
obtain the forbidden intervals, the ratio of the length of these intervals to 
that of the adjoining allowed portions decreasing as we pass to large values 
of [3a. We may say that fast electrons have less trouble to pass the potential

 on December 4, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


Quantum Mechanics of Electrons in Crystal Lattices. 503

barriers than slow electrons and can be considered more nearly as free. Letting 
P approach infinity reduces the allowed portions of the (3a-axis to the points 
mz {n =  ±  1> ± 2 ,  ...). The energy spectrum now becomes discrete, the 
energy values

W =  n2A2/8ma2, (n =  1, 2, ...)

being those of an electron confined to move between two impenetrable potential 
barriers at a distance a apart. The electrons are caught between the potential 
walls, they have become bound.

Fig. 3 shows the change in the energy spectrum during the transition from 
the case of free to that of bound electrons.
In the region 0 ^  P ^  47r, P/4tc has been 
chosen as abscissa, while for in  ^  P ^  oc 47c/P 
is used. The shaded area represents the 
allowed values of (fta/n)2.

2. The Wave-functions.—We come now to 
consider the wave-functions of our problem.
Since b in the limit is reduced to zero, we are 
only concerned with the solution (4). Solving 
the linear equations for the constants A, B, C,
D in this limiting case gives us

1
D =

\  ___  g - i ( a + 0 ) f l  *

u is given by equation (4) in the cell extending 
from 0 to a, while in the cell extending from 
ra to (r +  1) a it will be given by

u  =  C g* (-« + 0 ) (*-*•<*) J ) e i ( - a - p ) ( x - r a ) ^

being periodic with the period a. According to 
equation (2) ijj in this cell will then be given by

=  0 d*0*+fr(tt-p )a  _|_ J ) e -ifix+ir(a+fi)a^

with C and D related by equation (7). If we require that be normalised 
over a distance equal to its period L, we must have

i i p

f

p

r» I II 11—

p ^
4tt

_ 4tt
P

F ig . 3.

CC* =  - i  
2L

1 — cos (a -f- ft) a
cos aa cos (3a -f- ~ (cos aa — cos (3a)2

(9)

the asterisk denoting the conjugate.
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From equation (6) it appears that if with a given permissible value of (Ja a 
certain value of aa satisfies this equation, then also aa +  2mz and — oca -f 2m: 
(n an integer) will satisfy it. We see, however, from equations (7) and (8) 
that by substituting aa +  2mu for aa we do not obtain any new wave-functions, 
while substituting — aa -j- 2mz for aa we get the same wave-function as that 
belonging to — ($a, — aa. We may hence, without loss of generality, accept 
the convention that if mz ^  [3a fg (n +  1) tu, we shall associate with it that 
value of a a for which mz a a ^  (n +  1) tu. In this way there is associated 
with every permissible value of [3a one and only one value of aa, and we may 
use a to distinguish the stationary states.

We shall next investigate the influence of the value of P on the wave- 
functions. If we make P vanishingly small, then according to the convention 
just introduced pa will equal a a, and according to equation (7) D will vanish 
excepting for a a =  mz, in which case D — i  C. The wave-functions accord­
ing to equation (8) will go over into e±laX excepting for the special case just 
mentioned, in which they become equal to sin olx and cos ux so that we obtain 
the wave-functions of free electrons. At the same time the significance of a 
becomes apparent. For P approaching infinity, (3 takes the values mz, D =  — C 
according to equation (7), and we get from equation (8) the wave-functions of 
electrons confined in their motion between impenetrable potential walls at a distance 
a apart. -

If we let L increase, the energy values, as mentioned before, come closer 
together, and for very large values of L we may enquire after the density 
distribution of the energy values in the allowed regions of pa. According to 
equation (2) this is evidently given by

? < M = t %  =  2d h i  ((P j*  si“ ^  -  h  ° m  150+ s i ” ^

with p (pa) so normalised that

r (jSa) max. T
p(P«) =  -  ,

J (a/3) min. "

the integration extending over any one of the allowed regions of pa. Fig* * 
shows p (Pa)/L in the first o fthese for a value P =  37t/2, while for free electrons 
(P =  0) one obtains instead a horizontal line with an ordinate 1/2tz for all 
values of pa. The binding has thus the effect of concentrating the stationary 
states at the limits of an allowed region.

K. de L. Kronig and W . G. Penney.
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3. The Linear Momentum.—According to quantum mechanics the matrix 
elements of the linear momentum of an electron belonging to two stationary 
states a and a' are given by

V(*, *') =  U a* dx,

the integration extending over one period L of the functions and 
Introducing for and their expressions given by equations (7), (8), (9) 
and performing the integration it is found that p  (a, a') vanishes unless 
aa and a 'a differ by an integral multiple of 2tz. Thus if the state a lies in the 
first allowed region of the positive pa-axis, then p  (a, a') is different from zero 
for only one state a' in the first, one in the third, one in the fifth positive allowed 
region, etc., and one in the second, one in the fourth, one in the sixth negative 
allowed region, etc., viz., those states for which a'a — aa +  2mr. A simple 
calculation gives us for the square of the absolute value of these non-vanishing
matrix elements :

(a, a') p  (a', a) =  (— P$
\iza p 2 — p2/

sin2 aa (cos 3a — cos P'a)2
^1—cos aa cos (5a+ i  (cos aa—cos [5a)2 j^l— cos aa cos (3'a+ (cos a a— cos [i’a f  |

(10)
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To make the significance of equation (10) clearer we have computed from it 
in the first place nap (oc, a)/A and plotted it in fig. 5 as a function of (3a for the

R. de L. Kronig and W . G. Penney.

F ig. 5.

values of (3a lying in the first, second and third allowed regions of the positive 
[3a-axis, taking again P equal to 3tu/2. p  (a, a) represents the time average of 
the linear momentum of an electron in the stationary state a. As one easily sees

p (— a, — a ) =  — p (a, a ) .

Since the energy of the stationary states a and —a is the same, one may enquire 
if to a linear combination of the wave-functions and there might 
correspond a linear momentum of greater absolute value, but from a simple 
calculation one finds that p lies then between p ( — a, — a) and p (a, a). The 
straight line going through the origin in fig. 5 gives us nap {cl, a)jh for the case 
of free electrons, showing that the potential barriers have the effect of reducing 
the linear momentum for a given value of the energy. Indeed they make it 
vanish when P approaches infinity, p  (a, a) also furnishes us the electric 
current associated with the stationary state a, whose time average is obtained 
by multiplying p (a, a) by e/m, the ratio of the charge of the electron to its 
mass.

Furthermore we have plotted in fig. 6 the values of n2a2p (a, a') p (a , cc)/h as 
a function of (3a when a is a state in the first allowed region while a' is that state
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in the second negative, third positive and fourth negative allowed region (curves 
1, 2 and 3 respectively) for which the above quantity is different from zero. 
Again P has been taken equal to 37t/2. For vanishing P all the curves are 
reduced to zero. For infinite P the results agree with those for an electron 
confined to move between impenetrable walls a distance a apart. The quantities

0-717 7r

F ig. 6.

p(a,a') determine the probability of radiative transitions between the stationary 
states, and one sees from fig. 6 that the transitions to the second negative region 
far outweigh all others.

i. Extension of the Theory.—The results just given can be generalised directly 
so as to apply to the case of a three-dimensional lattice in which the potential 
is the sum of three terms V (x), V (y), V (z), each of which depends upon its 
co-ordinate in the same way as V (x) on x in the one dimensional case. 
This means that the space is divided by infinitely thin potential barriers 
into cubical cells with an edge a. The wave-equation can then be separated
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into three equations of the form (1), each involving only a single co­
ordinate, viz.,

^  +  «2[W1 - V ( a ;) ] + 1 =  0

^  +  K2[W2 - V ( y ) ] 4 ' 2 =  0

^ %  +  k2[W3 - V ( z)]^3 =  0

(11)

the total energy of the system and its wave-function being given by
W  =  W j +  W 2 +  W 3, (12)

4> =  <W 4*2 4̂ 3 (13)

respectively. Each of these equations can be treated in exactly the same way 
as equation (1). The stationary states will now be characterised by three 
quantities (3X, (i2, fi3, related to Wx, W 2, W3 through equations analogous to 
equation (o), or by the corresponding quantities ocx, oc2, oc3.

In  the one-dimensional case we have seen th a t for P  =  0 the energy W is a 
continuous function of a a,while for P  ^  0 W has discontinuities for a =  nr 
(n — -u i, -j-2, ...). Similarly we shall have here th a t for P  — 0, W is a 
continuous function of axa, a 2a, a 3a,while for P  ^  0 the function becomes 
discontinuous on the surfaces axa =  % a =  tu, a =  (wx, n2, n3 =  
-.0 ]_ _j_2, ...). The detailed behaviour of the energy values as well as of the 
wave-functions when P is varied follows directly from equations (12) and (13) 
and the results of the previous sections. The same remark applies to the 
matrix elements of the linear momentum. I t  is interesting to note in this 
connection th a t p x (oq, a 2, a 3 ; a / ,  a 2', a 3') is different from zero only provided 
a / a  =  a,a +  2mr, a 2a =  a 2a,a 3’a =  oc3a (n integer) with similar results 
holding for pv and pz.

A number of general qualitative features encountered in the special problem 
discussed may be expected to occur also for other periodic fields of potential. 
The falling apart of the energy spectrum into continuous regions separated bv 
finite intervals has been met with previously in the case of a potential given 
by V(x) =  A cos 2 ax,discussed by Strutt,* who also mentions tha t a similar

* M. J. O. Strutt, ‘ Ann. Physik,’ vol. 86, p. 319 (1928). Attention may be called 
here to the fact that the energy regions considered by him as allowed are just e one  ̂
excluded for translatory motion through the lattice, and vice, versa. The energy spec ^  
of the equations corresponding to the potential A cos 2 and to a potential as s own 
fig. 1 for the particular case a —- b have also been discussed in connection wit 1 p
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effect arises for any one dimensional periodic field of potential according to 
theorems proved by Haupt.f The stationary states, just as in our problem, 
can be characterised by a value a, the coefficient of the exponent in the function 
eiax which results from the wave-function when the potential field is reduced 
to zero. The energy W of the stationary states again has discontinuities at 
the points aa =  nn (n — ^ 1 , ^ 2 , ...). In an analogous manner the surfaces 
a xa =  n±tt, a 2a =  n27z, a3a =  n3n (nv n2, n3 — i l ,  ih2, ...) will be surfaces 
of discontinuity for the function W(axa, a 2a, a3a) in the general three-dimensional 
case.

Another result, valid for any periodic field of potential, is concerned with the 
matrix elements of the linear momentum p (ax, a 2, a3 ; a / ,  a 2', a3')J. I t may 
be shown that these can be different from zero only if a /a  — axa +  2nxn9 
a 2'a =  a2a +  2w27u, a3'a =  a3a +  2n37r (nv n2, ns integers). For the wave- 
functions in the two states ax, a 2, a3 and a / ,  a 2', a3' according to Bloch (Joe. 
cit.) are given by

, ! ,  —  . .  p i { a yX + a  &  +  a3Z)
U/a1a.i az & j

where the u’s are periodic in x, y, z with the period Introducing these
functions in the expression for the matrix element of px, say, gives us

Vr, (al> a 2> a 3 ; <*l'> a 2'» a 3')

. h f, 
2m J

=  - i2m J

du,ai'a»a/

U * a x ( g* [ ( « /  — fti) #  +  ( « /  — «a) y  +  (a :/  — o.Q 2j f l y  flg

the second term in the bracket not contributing anything on account of the 
orthogonality of the two wave-functions. From the periodicity of the u’s 
it follows that we may write

a l a 2a 3
£â ajjo' 00

S
nxntn->— — oo

of classical physics by van der Pol and Strutt, “ Phil. Mag.,” vol. 5, p. 18 (1928). The 
advantage of the potential field considered in our article as compared with the field A 
cos 2ax lies in the fact that only elementary functions occur, making the evaluation of 
the various matrix elements very easy.

t  O. Haupt, ‘ Math. Ann.,’ vol. 79, p. 281 (1919).
% See also Kronig, loc. cit.
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and introducing this in px leads immediately to the conclusion stated above. 
For two stationary states not separated by a surface of discontinuity of W 
the matrix element p hence always vanishes.

5. Applications.—A problem which we shall investigate here with the help 
of the one-dimensional model is the reflection of electrons of a given velocity 
falling from vacuum on to the lattice. The potential will then be as shown in 
fig. 7, for if our model is to represent an actual lattice, the potential of the

R. de L. Kronig and W . G. Penney.

3 al a
F ig . 7.

bottom of the lattice must be assumed to lie below that outside by a certain 
amount Vx. We enquire after a solution representing an incident and a reflected 
beam of electrons for negative values of x and a transmitted beam for positive 
values of x. For x <  0 we shall have th u s :

_ =  e^x  _j_ (14)

while for x >  0 the solution is given by equation (8). a0 and [3 are related by

*o2 +  *2Vi =  P2>

since the right and left-hand sides of this equation represent respectively the 
energies of the electron on the left and right of the point x =  0, which must 
be equal. The requirement that the function and its first derivative shall be 
continuous for x =  0 gives us the values of A in equation (14) and of C in 
equation (8).

AA* measures the intensity of the reflected beam, that of the incident beam 
being equal to 1, and is hence equal to the coefficient of reflection R. We find 
that

(cos a a — cos (3a)2 +  (sin aa — — sin [3a)2
R =  -------------------------------------- 1 ----------- (1S>

(cos a a — cos (3a)2 +  (sin aa +  — sin (3a)2
P .

in the allowed regions of (3a, while R =  1 for the forbidden regions of pa. The
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in the earlier sections. In  fig. 8 R is represented as a function of the velocity
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volts

F ig. 8.

of the incident beam measured in  Vvolts, which is proportional to a0. For the 
binding constant P we have again taken 3rc/2, while for Vx and a we have 
assumed the values Vx =  15 volts, a =  2 * 2 .10~8 cm. (suggested by the work 
of Rupp quoted below). The most essential feature of the diagram is, that 
regions of partial reflection alternate with regions of total reflection, and that 
these latter have a finite breadth, decreasing as the velocity of the particles 
gets greater. For very large values of the velocity total reflection takes place 
only when the lattice constant a is very nearly an integral multiple of the 
de Broglie wave-length of the incident particles, the regions of total reflection 
then becoming quite narrow.*

Measurements of the reflection and transmission of electrons in crystal 
lattices have been performed by various observers.f A quantitative compari­
son of their results with those obtained here is made difficult by the following 
circumstances : (1) Tf we had made our calculation with the three-dimensional

* Morse, ‘ Phys. Rev.,’ vol. 35, p. 1310 (1930) has investigated the reflection and 
scattering of elections by a crystal in which the potential depends upon the three 
co-ordinates through terms of -the type A cos 2ax. He obtains for the reflection 
coefficient at perpendicular incidence a curve essentially of the same type as that shown
in fig. 8.

t  Davisson and Germer, 4 Phys. Rev.,’ vol. 30, p. 705 (1927); 4 Proc. Nat. Acad.,’ vol. 
14, pp. 317, 619 (1928); Rupp, ‘ Ann. Physik,’ vol. 85, p. 981 (1928), vol. 1, p. 801 (1929), 
vol. 3, p. 497 (1929), and vol. 5, p. 453 (1930); 4 Z. Physik,’ vol. 61, p. 587 (1930); 
Thomson, ‘ Proc. Roy. Soc.,’ A, vol. 117, p. 600 (1928), vol. 119, p. 651 (1928), and 
vol. 125, p. 352 (1929).

VOL. CXXX. A. 2 L
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lattice, we would have obtained, besides the reflected and transmitted beams, 
diffracted beams which reduce the intensities of the former; (2) the periodic 
field of potential considered here differs from that actually present in a metal; 
(3) in the experiments it is found that some of the incident electrons suffer 
energy losses due to inelastic collisions with the electrons in the lattice, a 
phenomenon not provided for in our model. This effect also reduces the 
intensities of the reflected and transmitted beams. Nevertheless the principal 
features which appeared in our investigation, viz., the finite breadth of the 
reflection maxima, the decrease of this breadth with increasing velocity of 
the incident electrons and the decrease in the ordinates of the reflection minima, 
can be recognised in the experimental data (see in particular the work of Rupp).

An explanation can be given here also of a phenomenon recently observed 
by Rupp.* He finds that when the velocity of the incident electrons is 
gradually increased, new radiations appear in the soft X-ray spectrum of the 
substance bombarded at about the same velocities at which the reflection 
coefficient has a maximum. This can be understood if it be remembered that 
when the velocity begins to exceed that corresponding to the upper limit of 
a forbidden interval in the energy spectrum of the crystal, the impinging 
electron can enter into a new region of allowed energy values, giving it new 
possibilities for radiative transitions. According to this view the excitation 
threshold should differ from the reflection maximum by an amount equal to 
half the top-breadth of the maximum (lying toward higher velocities), but 
since in Rupp’s measurements the maxima are already rather sharp the differ­
ence is probably obliterated by effects such as the inhomogeneity in the 
velocities, the imperfections of the crystal, etc. Perhaps, also, the constant 
energy losses of electrons impinging upon incandescent metals as observed by 
Rudbergf may be interpreted as corresponding to the transfer of the conduction 
electrons to the higher allowed regions of energy.

It is hoped to investigate later other physical properties of the model dis­
cussed as they appear in the phenomena mentioned at the beginning of this 
article.

Summary.
1. It is shown that the wave-equation representing the motion of an electron 

in a periodic field of potential can be integrated in terms of elementary functions 
when the potential takes the form of a series of equidistant rectangular barriers.

* 4 Naturwiss.,’ vol. 18, p. 880 (1930). 
t  Rudberg, ‘ Proc. Roy. Soc.,’ A, vol. 127, p. I l l  (1930).
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When the breadth b of these barriers is made infinitely small and their height V0 
infinitely large, the results become particularly simple, the influence of the 
barriers depending then only on the product bY0.

2. In the one dimensional problem for this limiting case the spectrum of 
permissible energy values is found to consist of continuous regions separated 
by finite intervals. By varying the quantity bY0 from zero to infinity we pass 
from the case of free to that of bound electrons, and can thus study the changes 
in the allowed and forbidden ranges of the energy and in the wave-functions 
during this transition.

3. An investigation of the matrix elements of the linear momentum shows 
that the electrons can pass through the lattice and that there exists for them 
the possibility of transition to other stationary states under emission or 
absorption of radiation, the electrons thus having at the same time the 
characteristic properties of free and of bound electrons.

4. An investigation of the reflection of electrons by a crystal represented by 
the field of potential considered leads to results in qualitative agreement with 
the experimental facts. An explanation of a phenomenon recently observed 
by Rupp is given, and the possible connection of the theory with measurements 
of Rudberg is pointed out.
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